
Bose-Einstein condensation in the Apollonian complex network

I. N. de Oliveira,1 F. A. B. F. de Moura,1 M. L. Lyra,1 J. S. Andrade, Jr.,2 and E. L. Albuquerque3

1Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil
2Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, CE, Brazil

3Departamento de Física, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
�Received 7 January 2010; published 24 March 2010�

We demonstrate that a topology-induced Bose-Einstein condensation �BEC� takes place in a complex net-
work. As a model topology, we consider the deterministic Apollonian network which exhibits scale-free,
small-world, and hierarchical properties. Within a tight-binding approach for noninteracting bosons, we report
that the BEC transition temperature and the gap between the ground and first excited states follow the same
finite-size scaling law. An anomalous density dependence of the transition temperature is reported and linked
to the structure of gaps and degeneracies of the energy spectrum. The specific heat is shown to be discontinu-
ous at the transition, with low-temperature modulations as a consequence of the fragmented density of states.
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The study of physical models embedded in complex net-
works has contributed to the understanding of transport and
information flow within systems of many degrees of freedom
�1–5�. Although many models have been proposed to de-
scribe real-life networks, most of them are stochastic models,
presenting the disadvantage that fixed degree distributions
are not constructed by recursive methods. Deterministic
models have the strong advantage to often allow the possi-
bility to compute analytically their properties, which may be
compared with experimental data from real and simulated
networks �6,7�.

Complex networks describe many systems, most of which
share three apparent features: power-law degree distribution,
small average path length, and high clustering coefficient.
With respect to their topology, they are usually divided into
three large classes �8�: random networks, where all the nodes
are randomly connected �9�, scale-free network, where the
number of links originating from a given node exhibits a
power law distribution p�k��k−�, with k being the degree
�connectivity� of nodes �10�, and the small-world one, show-
ing structures where the diameter or the average shortest path
� increases logarithmically with the system size N �11�.

Within the above context, Apollonian networks represent
an important class of deterministic networks that are scale-
free display small-world effect can be embedded in a Euclid-
ean lattice and show space filling as well as matching graph
properties �12,13�. Previous studies explored the topological
features of Apollonian networks and their effect on the be-
havior of a variety of transport, growth, and Ising models
�14–18�. Strongly correlated electrons on the Apollonian net-
work were also studied showing an antiferromagnetic order
and a metal-insulator transition �19�. Further, the spectral and
thermodynamic behavior of a free-electron gas in the Apol-
lonian network was investigated presenting several unique
characteristics such as deltalike singularities, gaps, and mini-
bands, as well as localized and extended electronic eigen-
states �20�. These features were shown to be reflected in the
thermodynamic behavior of the free-electron gas, particu-
larly in the electronic specific heat �21�.

On the other hand, the thermodynamic behavior of
bosonic systems in complex networks is still unexplored. An
underlying complex topology is expected to strongly affect

the thermodynamic of the free-boson gas, particularly the
Bose-Einstein condensation �BEC� phenomenon that leads to
a macroscopic occupation of the ground state below a critical
temperature. The effect of the network topology on the Bose-
Einstein condensation has been the subject of recent investi-
gations. The general conditions for the occurrence of BEC on
networks in the presence of anomalous spectral regions in
the density of states has been demonstrated �22–28�. Particu-
larly, it was explained in detail the occurrence of BEC in the
comb lattice which is obtained connecting to each site of a
linear chain, namely, the backbone, a one-dimensional finger
chain �24�. This lattice can be experimentally implemented
as an array of Josephson junctions. Further, considering non-
interacting bosons on a star network whose topology may be
realized with a dilute atomic gas in a star-shaped deep optical
lattice, Brunelli et al. showed the occurrence of a topology-
induced BEC �25�. In this case, the ground state is localized
around the star center, with the critical temperature depend-
ing only on the number of the star arms and on the Josephson
energy of the bosonic Josephson junctions. However, the
above networks are not complex, in the sense of not present-
ing power-law connectivity distribution and small average
path length.

In this work, we address the open question concerning the
thermodynamics of a bosonic gas with a conserved density
distributed in a complex network. Due to its deterministic,
scale-free, and small-world properties, the Apollonian net-
work will be used as a prototype network. Within a tight-
binding approach, we will show that a topology-induced
Bose-Einstein condensation takes place with unconventional
features directly related to the complex structure of the den-
sity of states. We will report the finite-size and density scal-
ing behavior of the transition temperature and relate them to
the fragmented structure of gaps and degeneracies of the en-
ergy spectrum. Further thermodynamic fingerprints of the
underlying complexity will be shown in the specific-heat be-
havior.

We start by considering one bosonic particle moving on
an Apollonian network described by a tight-binding Hamil-
tonian taking into account only hopping terms between di-
rectly connected sites of the network, namely,
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H = �
n

�n�n�	n� + �
n,m

N

Hnm�n�	m� . �1�

Here �n� represents the state where the particle is localized at
site n and �n is the on-site energy. Disregarding any source of
inhomogeneity in the on-site potential, we will take �n=0
without any loss of generality. The hopping amplitudes Hnm
are non-null only between the connected sites of the network
and will be taken as the only relevant microscopic energy
scale �Hnm= t�.

The Apollonian network in its simplest two-dimensional
version starts with a single equilateral triangle. The construc-
tion proceeds recursively in terms of the generation g. For
the �g+1�th generation, the network is obtained by inserting
a node within each triangle of the gth generation and con-
necting it to each of the triangle corners �see Fig. 1�a��. The
total number of network nodes N�g�= �3g+5� /2. This net-
work has scale-free, small-world, and hierarchical properties,
as well as a large clustering coefficient. Pictorial representa-
tions of the iteration process and details concerning the node
and connectivity distributions can be found elsewhere
�12–21�.

Figure 1�b� depicts the integrated density of states �IDOS�
for an Apollonian network with g=9 generations as obtained
from the direct diagonalization of the Hamiltonian. The ver-
tical segments correspond to the degenerated energy levels
while the horizontal ones are associated with the energy
gaps. The largest degeneracy is observed at E=0 which sup-
ports 1/3 of the one-particle states. The staircase aspect of
IDOS reveals the discrete scale invariance of the energy
spectrum. The inset shows that the energy gap between the
ground and the first excited states presents a simple power-
law scaling with the total number of nodes of the network, as
�E0�N1/3. It implies in a diverging ground state energy
when N increases. This scaling is associated with the diver-
gent connectivity of the sites at the inner generations as the
thermodynamic limit is approached. The ground state has a
particle density distribution that decays as the site connectiv-
ity decreases. Therefore, in low temperatures, the bosons are
predominantly localized on the sites of the first generations
of the network. As the temperature increases, the excited

states start to be populated and the bosons become more
uniformly distributed on all network sites.

The thermodynamic behavior of a boson gas composed of
a fixed number Np of noninteracting bosons in an Apollonian
network can be directly obtained from its energy spectrum.
Both low- and high-temperature behavior are strongly af-
fected by the constraint in the particle number. At low tem-
peratures, a finite fraction of the particles may condensate at
the ground state instead of just disappearing as it usually
happens, for instance, with collective excitations in con-
densed matter. At high temperatures the internal energy satu-
rates once new particles cannot be created and the energy
spectrum is bounded.

Considering the grand canonical ensemble, the average
number of particles at the ith energy state is defined by

	ni� =
1

z−1 exp���i� − 1
. �2�

Here z=exp���� is the fugacity, �=1 /kBT, and � is the
chemical potential which can be extracted from Np
=�i=1

N 	ni�.
In Fig. 2�a�, we show the fugacity dependence on the

temperature for the energy spectra generated from Apollo-
nian networks with distinct generations and Np /N=1 /2. All
energies were shifted by the ground state energy in order to
have �=0 as the lower bound of the chemical potential. Note
that the fugacity assumes values near unity at low tempera-
tures, presenting a monotonic decay afterwards. In networks
with a small number of generations, the transition from the
low to the high-temperature regime is rounded by finite-size
effects. It becomes singular only in the thermodynamic limit,
representing the true Bose-Einstein transition. The present
result shows that the transition temperature increases with
the network size. For completeness, we plot in Fig. 2�b� the
fugacity as a function of temperature for an Apollonian net-
work with g=9 generations and different particle densities.
The temperature dependence points to a Bose-Einstein con-
densation with a transition temperature that increases with
the number of particles.

The average number of particles occupying the ground
state, namely, N0, can be directly obtained from the fugacity
as N0=z / �1−z�. We show in Fig. 3�a� the fraction of par-

1P

3P2P -30 -20 -10 0 10 20 30
E / t

10
-4

10
-3

10
-2

10
-1

10
0

ID
O

S

10
2

10
3

10
4

N

1

2

3
4
5

∆E
0

/t

(b)(a)

FIG. 1. �Color online� �a� Apollonian network with g=3. P1, P2,
and P3 are the sites of the original triangle at the zeroth generation.
�b� IDOS within the tight-binding approximation for a single par-
ticle in an Apollonian network with g=9 generations. The vertical
segments correspond to the degenerated energy levels while the
horizontal segments are associated with the energy gaps. Observe in
the inset the power-law scaling �E0�N1/3, where N is the total
number of sites in a finite network.
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FIG. 2. �a� The fugacity as a function of temperature for Apol-
lonian networks with distinct number of generations for Np /N
=1 /2. Note the existence of a Bose-Einstein condensation at low
temperature �z
1�, which is rounded by finite-size effects. �b� The
fugacity as a function of temperature for an Apollonian network
with g=9 generations and different numbers of particles.
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ticles in the ground state N0 /Np as a function of temperature
for Apollonian networks with distinct generations, consider-
ing the ratio Np /N=1 /2. For low temperatures, the fraction
N0 /Np is finite. Except by the finite-size rounding off, the
condensed fraction vanishes at a finite temperature which
depends on the number of generations of the Apollonian net-
work. We assume the temperature of maximum curvature as
being the transition temperature Tc for a given finite network.
The inset shows the dependence of transition temperature,
Tc, on the total number of sites N of the network. The dashed
line corresponds to the scaling behavior Tc�N1/3, which re-
flects the size dependence of the gap between the ground and
the first excited states. A proper rescaling of the hopping
amplitudes would be required to obtain a finite transition
temperature in the thermodynamic limit, as it is usually per-
formed in lattice models with diverging connectivity.

Figure 3�b� depicts the fraction of particles condensed in
the ground state as a function of temperature for an Apollo-
nian network with g=9 generations and different particle
densities. The transition temperature also increases with the
particle density. However, it does not follow the power-law
scaling usually observed in Bose-Einstein transitions. The
inset shows the dependence of the inverse of the normalized
transition temperature t /kBTc on the scaled number of par-
ticles Np /N. Actually, the data can be well fitted by Np /N
�exp�−�� /kBTc�, specially in the low-density regime. This
behavior can be reproduced by assuming a simplified struc-
ture for the density of states composed of only two allowed
energies: the ground state �0=0 and a highly degenerated
level with energy ��. Within this scenario, the total number
of particles can be written as Np=�i�z−1 exp���i�−1�−1

�N exp�−�� /kBTc�, where it was assumed that at Tc there is
a vanishing fraction of particles in the ground state, z=1 and
Np /N�1.

Finally, we further explore the thermodynamic behavior
of the present noninteracting boson gas on the Apollonian
network by computing its specific heat. It is evaluated by

differentiating the average internal energy U�N ,T�
=�i=1

N �i	ni� with respect to the temperature T, i.e., Cv
=dU�N ,T� /dT �V, where V is the volume of the system which
is kept constant by maintaining fixed the total number of
one-particle accessible states N. It is straightforward to show
that it can be put in the form

Cv/kB =

�
i

�i
2 sinh−2�yi� − ��

i

�i sinh−2�yi��2

4�kBT�2�
i

sinh−2�yi�
, �3�

with yi= ��i−�� /2kBT.
In Fig. 4�a�, we show the normalized specific heat

CV /kBNp as a function of temperature for Apollonian net-
works considering distinct number of generations and a fixed
particle density Np /N=1 /2. Note that the discontinuous
jump at the Bose-Einstein transition temperature, usually de-
picted by trapped free-boson gases �29–32�, is smoothened
by finite-size effects. It only becomes a true discontinuity in
the thermodynamic limit. The maximum value of the specific
heat per particle does not depend on the network size. At
high temperature, all curves merge into a single T−2 decay.
The low-temperature behavior shows a modulation which is
related to the fragmented structure of the energy landscape
with several energy scales. Figure 4�b� shows the normalized
specific heat CV /kBNp as a function of temperature for the
g=9 Apollonian network considering different particle den-
sities. The maximum in the specific heat per particle de-
creases with increasing densities.

In summary, we determined the thermodynamic behavior
of noninteracting bosons hopping in a deterministic complex
network which exhibits scale-free and small-world character-
istics. By considering a gas with a conserved density, we
demonstrated that it displays a topology-induced Bose-
Einstein condensation. This transition has a nature com-
pletely distinct from the BEC previously reported to occur in
evolving complex networks associated with the capture of a
macroscopic fraction of the links by a single node �33,34�.
Here, we have a finite fraction of the particles condensing in
the ground state of the network. Although the transition is
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FIG. 3. �a� Fraction of particles N0 /Np in the ground state as a
function of temperature for networks with distinct number of gen-
erations: g=6 �solid line�, g=7 �dotted line�, g=8 �dashed line�, and
g=9 �dotted-dashed line�. Here, we used the ratio Np /N=1 /2. The
inset shows the dependence of transition temperature, Tc, on the
total number of sites N of the network. The dashed line corresponds
to Tc�N1/3. �b� Fraction of particles N0 /Np in the ground state as a
function of temperature for an Apollonian network with g=9 gen-
erations and different number of particles: Np /N=1 /2 �solid line�,
Np /N=1 /4 �dotted line�, Np /N=1 /8 �dashed line�, and Np /N
=1 /16 �dotted-dashed line�. The inset show the dependence of the
transition temperature Tc with the number of particles Np /N. The
dashed line corresponds to Np /N�exp�−�� /kBTc�.
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FIG. 4. The normalized specific heat as a function of tempera-
ture for noninteracting bosons in Apollonian networks: �a� consid-
ering networks with distinct generations and a fixed particle den-
sity; �b� considering a network with g=9 generations but different
particle densities Np /N. A discontinuity in the specific heat at the
Bose-Einstein transition temperature develops as the thermody-
namic limit is approached. The oscillations in the low-temperature
behavior reflects the fragmented structure of the density of states.
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rounded off by finite-size effects, these become vanishingly
small even for networks with a small number of generations,
which allow to define an effective transition temperature on
finite networks. We showed that the transition temperature
increases with the network size as T�N1/3, the same scaling
shown by the gap between the ground and first excited states.
The transition temperature has an anomalous dependence on
the particle density which is related to the complex structure
of gaps and degeneracies of the energy spectrum. The above
features were also shown to be reflected in the temperature
dependence of the specific heat. In principle, networks of
Josephson junctions or optical networks could be used to
probe the here proposed topological Bose-Einstein conden-

sation. In these cases, effects of disorder and interparticle
interactions should be taken into account. Further, the spe-
cific role played by the scale-free, small-world, and hierar-
chical properties of the network on the BEC transition can be
explored by considering distinct topologies. It would be in-
teresting to have future developments along these lines.
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